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Abstract

The remesh-free property is the most attractive feature of the various versions of fixed-grid-based shape optimization
methods. When the design boundary curves do not pass through the predetermined analysis grids, however, the element
stiffness as well as the stress along the curves may be computed inaccurately. Even with the popular area-fraction-based
stiffness evaluation approach, the whole optimization process may become quite inefficient in such a case. As an efficient
alternative approach, we considered a stiffness matrix evaluation method based on the boundary curve approximation
by piecewise oblique curves which can cross several elements. The main contribution of this work is the analytic der-
ivation of the shape sensitivity for the discretized system by the fixed-grid method. Since the force term in the sensitivity
equation is associated only with the elements crossed by the design boundary curve, we only need the design velocities
of the intersecting points between the curve and the fixed mesh. The present results obtained for two-dimensional elas-
ticity and Poisson�s problems are valid for both the single-scale standard fixed-grid method and the multiscale fictitious
domain-based interpolation wavelet-Galerkin method.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the standard shape optimization based on the finite element approach, remeshing cannot be avoided
during the optimization process if accurate analysis is to be guaranteed, especially for design problems
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requiring large shape changes (Bennett and Botkin, 1985; Yao and Choi, 1989). Researchers have shown
recent interest on the shape optimization based on the fixed-grid analysis or the Eulerian-type analysis
because the analysis offers way to avoid cumbersome remeshing processes. Another advantage of the
fixed-grid-based shape optimization method is that it requires only the boundary velocity field for design
updates while the standard finite-element-based shape optimization method generally requires design veloc-
ities for all nodes, the so-called domain and boundary velocity fields (Choi and Chang, 1994). The fixed-
grid based method shows this feature because its analysis nodes are independent of the shape changes.
Though the fixed-grid method is equipped with the excellent remesh-free property, this method has some

difficulties in accurately evaluating the stiffness matrices of the elements adjacent to curved boundaries. It
has this difficulty mainly because the analysis grids or nodes are always predetermined, and the design
boundary does not necessarily pass through these analysis grid points. Since the present sensitivity analysis
is mainly for a method to overcome such a difficulty, it is worth stating the implementation technique of the
fixed-grid method for shape optimization.
In implementing the remesh-free fixed-grid analysis method, the most popular approach is to embed the

original design domain x encircled by curved boundaries into a fictitious domain X usually having a simple
geometry. Then, the fixed-grid-based analysis is carried out for X. In Fig. 1, we illustrate a rectangular fic-
titious domain for a generally-shaped x. The single-scale fixed-grid method usually uses uniformly distrib-
uted rectangular finite elements for two-dimensional cases. The stiffness of the elements inside x is set to be
the stiffness of the original material, but the elements inside Xnx are assigned to have a very weak material.
The question is: How does one evaluate the stiffness of the boundary elements lying on the boundary ox. In
the fixed-grid method, the stiffness of the boundary elements changes when the boundary curve changes.
Therefore, the boundary element stiffness must be estimated accurately for efficient shape optimization.
Until recently, the common approach has been the area-fraction-based stiffness evaluation method, as

was used in Garcia and Steven (1998) and Kim and Chang (2003, submitted for publication). The concept
of this approach is to evaluate the boundary element stiffness proportionally to the area fraction of the part
belonging to x within the boundary element. The boundary design velocity is thus related to the rate of the
change of the area fraction of the boundary element. However, the boundary curve in this method needs to
be approximated by zigzags that consist only of vertical and horizontal lines, so this area-fraction-based
approach is not effective for curved boundaries. The only way to obtain accurate solutions near the bound-
ary is to work with highly-dense grid distributions.
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Fig. 1. A two-dimensional problem with the domain of interest x embedded in a fictitious domain X (Cg
x: boundary under kinematic

constraint, Ch
x: boundary under natural condition,

DCx: design boundary).
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In order to obtain accurate solutions near the curved boundary without excessive grid densities, Jang
et al. (2002, 2003) proposed a more direct approach; a curved boundary is approximated by piecewise ob-
lique lines formed by the connections of the points between the curved boundary and the fixed-grid lines. In
this case, the piecewise oblique line, the approximated boundary curve, does not usually pass through the
analysis nodes. Therefore, the stiffness matrix of a boundary element should be integrated separately by
considering the oblique line on the element, but this integration can be easily performed by the Gauss quad-
rature. Jang et al. (2002, 2003) used this idea for the shape optimization method based on the adaptive mul-
tiscale interpolation wavelet-Galerkin method; the standard fixed-grid method is a non-adaptive, single-
scale version of the wavelet-Galerkin method. Thus the piecewise oblique boundary curve approximation
scheme works equally for the standard fixed-grid method. In Jang et al. (2002, 2003), however, the resulting
sensitivity analysis was carried out by the direct finite difference scheme.
In this work, we present the semi-analytic sensitivity analysis for the fixed-grid shape optimization based

on the oblique boundary curve approximation. By the semi-analytic analysis, we mean the analytic sensi-
tivity analysis for a discretized structural system, or the continuum-discrete sensitivity analysis (Choi and
Kim, in press). In the first part of this work, some results derived by Hansen et al. (2001) are utilized for the
present analysis; the analysis grids not interacting with the boundary curves are stationary or fixed during
the whole design process both in the method by Hansen et al. (2001) and in the oblique boundary curve
approximation method. The sensitivity equations and the boundary conditions are derived for two-dimen-
sional Poisson problems and elasticity problems. The shape change will be represented by the movement of
the intersection points. The force vector for the sensitivity equations comes only from the boundary velocity
fields of the intersection points. Once the semi-analytic sensitivity is calculated, it may be used to check the
accuracy of the sensitivity by the finite difference scheme. To this end, we considered a domain having a
simple geometry parameterized by a Bezier curve and compared the numerical and analytical sensitivities.
The shape sensitivity for a microgripper whose boundary is parameterized by a B-spline curve was also con-
sidered for verification. Finally, we also remark on how the present sensitivity analysis based on the single-
scale fixed-grid method can be extended for the multiscale interpolation wavelet-Galerkin method.
2. Various boundary curve approximations for fixed-grid shape optimization

In Fig. 2, we illustrate several boundary approximation techniques based on fixed-grid or fixed-basis
functions. The vertical axis of the ellipse in Fig. 2(a) is considered as the design parameter and the design
changes to the lower figure in Fig. 2(a).
Fig. 2(b) shows the approximated geometry of the ellipse using the area-fraction-based approximation.

The ellipse is embedded into a rectangular fictitious domain, which is divided into elements with fixed mesh.
In the figure, the gray level of the elements represents the area fraction which is defined as
ae ¼ Aex
Ae

ð1Þ
where Ae and Aex stand for the area of the element and the portion of A
e lying inside the domain of interest

x, respectively. For elements inside x, ae = 1 and ae = 0 for elements outside x.
Using the area fraction in Eq. (1), the material property Ce for a boundary element is approximated as
Ce ¼ aeCþ ð1� aeÞcC; 0 < c � 1 ð2Þ

where Ce is the material property of the element inside x.
Thus, the design change in the area-fraction-based approximation method is represented by the change

of the material property of boundary elements. The design sensitivity can be, therefore, expressed with the
sensitivity of the area fraction:
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Fig. 2. Boundary approximation techniques for (a) the design change of an ellipse, (b) the area-fraction-based approximation and
(c) the present approximation using oblique boundary lines.
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oxe
V � ndC ð3Þ
where z is the design parameter, xe is the x-inside region of the boundary element and V means the bound-
ary design velocity with respect to z. The unit vector outward normal to the boundary is expressed as n. In
Eq. (3), we use the following formula (see Haug et al., 1986 for the proof):
d

dz

Z Z
x
f dx ¼

Z Z
x

of
oz
dx þ

Z
ox

fV � ndC ð4Þ
Using Eq. (3), Kim and Chang (2003, submitted for publication) derived the design sensitivity for the area-
fraction-based approximation method and applied it to a torque arm design problem undergoing a rela-
tively large shape change.
When local performance measures such as heat fluxes or stresses are used as design constraints in shape

optimization, local measures must be evaluated accurately to speed up the optimization process and
improve the quality of the final design. Since most local design constraints are measured on the design
boundary, the quality of boundary approximation plays a key role in shape optimization based on the
fixed-grid method. The zigzag approximation of the area-fraction-based approximation method yields,
however, inaccurate values near the domain boundary. As a result, extremely many elements are required
to recover the accuracy, which leads to high numerical cost.
To deal with such accuracy problem on the domain boundary, Jang et al. (2003) directly approximated

the boundary with piecewise oblique lines. As illustrated in Fig. 2(c), their approach significantly improved
the quality of the approximated boundary. The intersection points between the original boundary ox and
boundary elements are determined first, and then simply connected to construct the oblique boundary lines
Cex as in Fig. 3. The oblique boundary usually crosses the boundary element domain without passing
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Fig. 3. A circular boundary approximated by piecewise oblique lines.

G.-W. Jang, Y.Y. Kim / International Journal of Solids and Structures 42 (2005) 3591–3609 3595
through the analysis nodes. For the sensitivity analysis, the parametric values of the intersection points as
well as their locations should be calculated because they are required to calculate the boundary velocities.
Consider now the calculation of the stiffness matrix ke of the boundary element in Fig. 3. For plane elas-

ticity problems, the element stiffness matrix ke is given as
ke ¼
Z 1

�1

Z 1

�1
BTðn; gÞCeðn; gÞBðn; gÞjJjdndg ð5Þ
where B is the matrix relating strains to nodal displacements, Ce is the matrix with the elasticity coefficients.
The Jacobian jJj is simply one quarter of the element area in this case. On the boundary elements, Ce is not
uniform:
Ce ¼
C in xeA
eC in Xe n xeA

�
ð6Þ
where e is a small positive number.
The integration of Eq. (5) is, therefore, performed separately for xeA and Xe n xeA. To this end, we intro-

duce another coordinates (r, s) in addition to the element local coordinates (n,g). The coordinates of (r, s)
map a normalized rectangular domain [�1,1] · [�1,1] to xeA, i.e., the region bounded by 1–2–3–4 in Fig. 3.
The relation between (n,g) and (r, s) can be given as
n

g

� �
¼

X4
i¼1

Niðr; sÞ
ni

gi

� �
ð7Þ
where (ni,gi) are the local coordinates of points 1, 2, 3 and 4 in Fig. 3 and Ni(r, s) represent standard bilinear
functions. If xeA becomes a triangular region, it can be also treated by (7) as a degenerate case.
Using Eq. (7), the element stiffness in (5) can be written as
ke ¼ e
Z 1

�1

Z 1

�1
BTðn; gÞCBðn; gÞjJjdndg þ ð1� eÞ

Z Z
xeA

BTðn; gÞCBðn; gÞjJjdndg

¼ e
Z 1

�1

Z 1

�1
BTðn; gÞCBðn; gÞjJjdndg

þ ð1� eÞ
Z 1

�1

Z 1

�1
BTðnðr; sÞ; gðr; sÞÞCBðnðr; sÞ; gðr; sÞÞjJkĴjdrds ð8Þ
where Ĵ is the Jacobian relating (r, s) and (n,g).
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In case Xe n xeA is a triangle, (r, s) maps a normalized rectangle to Xe n xeA and k
e becomes
ke ¼
Z 1

�1

Z 1

�1
BTðn; gÞCBðn; gÞjJjdndg

� ð1� eÞ
Z 1

�1

Z 1

�1
BTðnðr; sÞ; gðr; sÞÞCBðnðr; sÞ; gðr; sÞÞjJkĴjdrds ð9Þ
The stiffness matrix evaluation in Eqs. (8) or (9) is applied only to the boundary elements. It only re-
quires small additional expenses to calculate the intersection points and element stiffness matrices along
the boundary of the domain. Therefore, the main advantages of the area-fraction-based approximation
method such as fast meshing and efficient stiffness matrix formulation are still preserved.
To calculate the element force vector, the following formula will be used:
fe ¼
Z 1

�1

Z 1

�1
Nðn; gÞTfjJjdndg
where f is the applied force and N is the matrix representing the bilinear shape functions. If f is a boundary
force such as pressure, the above equation is rewritten as
fe ¼
Z

Cex

NTf d1
where 1 is the coordinate on the oblique boundary Cex. The strict imposition of the Dirichlet condition or
the kinematic constraint is difficult for the fixed-grid-type methods as long as the boundary under con-
straint does not pass through the fixed grids. In this case, the kinematic constraint of the boundary is pre-
scribed on the grids nearest to the constrained boundary.
3. Sensitivity analysis for the oblique boundary curve approximation

Hansen et al. (2001) derived a sensitivity equation and its boundary conditions for the fixed-basis finite
element method. They showed that, in a stationary coordinate system, the stiffness matrix for the sensitivity
problem is the same as that of the reference problem, and the force vector for the sensitivity problem arises
only from the boundary elements of a design boundary. The fictitious domain method is not employed in
their research, and the area for a boundary element extends or shrinks with its nodes fixed as the design
changes. So, the normalized area for the boundary element is no more [�1,1]2. It may be difficult to have
consistent fixed mesh throughout the whole optimization process. New sets of fixed-basis finite elements
should be introduced to avoid extreme aspect ratios of boundary elements after updating the shape.
In this work, we derived the sensitivity equation and its boundary conditions for the fixed-grid method

with oblique boundary curve approximation by using some results given by Hansen et al. (2001). First, we
began with the sensitivity analysis of a one-dimensional problem with fixed-basis functions using the ficti-
tious domain. Though the fictitious domain method is impractical for one-dimensional problems, we used
the approach for the general derivation of sensitivity for problems of higher dimensions. The induced equa-
tions are extended to two-dimensional Poisson equations and elasticity problems.
3.1. Overview on the fixed-grid sensitivity analysis with a one-dimensional example

In the shape optimization with the standard finite element analysis, the sensitivity of a solution is gen-
erally given as
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duðx; zÞ
dz

¼ ou
oz

þ
XN
i¼1

ou
oxi

oxi
oz

¼ �uþ
XN
i¼1

ou
oxi

V i ð10Þ
where u(x;z) denotes a solution of an N-dimensional problem. The symbol ð��Þ denotes the partial derivative
o( Æ )/oz while d( Æ )/dz represents the material derivative. The coordinates xi in Eq. (10) are the convected
coordinates which change as the design changes. The symbol Vi in Eq. (10) denotes the change rate of the
coordinates with respect to the design change and referred to as the design velocity. The field of Vi does not
need to be unique as long as it satisfies the conditions of regularity and linear dependency (Choi and Chang,
1994). However, when the fixed grids are used in the analysis, the coordinates are stationary and indepen-
dent of the design change, so the sensitivity of a solution can be simply written as
duðx; zÞ
dz

¼ �u ð11Þ
To derive the equation for the sensitivity �u, we begin with a one-dimensional problem:
�ðku0Þ0 ¼ f ð12aÞ

u ¼ 0 at x ¼ 0 ð12bÞ

u0 ¼ 0 at x ¼ z ð12cÞ

where the domain of interest x = [0,z] and the right end of the domain is set as the design parameter. In Eq.
(12a), ( Æ ) 0 denotes the one-dimensional spatial derivative. In Fig. 4, the domain x is illustrated with its
embracing fictitious domain X and weak material property, ek , is imposed on Xnx.
The total potential energy of the problem in Eq. (12) can be written as
Uðuðx; zÞ; zÞ ¼
Z z

x¼0

1

2
kðu0ðx; zÞÞ2 � fuðx; zÞ

� �
dxþ

Z L

x¼z

1

2
ekðu0ðx; zÞÞ2 dx ð13Þ
with the kinematic constraint
u ¼ 0 at x ¼ 0 ð14Þ

Note that u 0 = 0 is assumed at x = L in Eq. (13).
The kinematically admissible u minimizing Eq. (13) is the solution of Eqs. (12). When the change of the

domain x is smooth enough to guarantee the smooth change of the solution, the solution for the problem
with a perturbed design minimizes the perturbed total potential. So, the solution for the perturbed problem
satisfies
l

L

z

Fig. 4. One-dimensional problem with the domain of interest x = [0, l] embedded in a fictitious domain X = [0,L].
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duUðuðx; zþ DzÞ; zþ DzÞ ¼ 0 ð15Þ

with the same boundary condition as in Eq. (14).
A Taylor�s expansion of Eq. (15) about a reference domain [0,z] is
duUðuðx; zþ DzÞ; zþ DzÞ ¼ duUðuðx; zÞ; zÞ þ du
�Uðuðx; zÞ; zÞDzþ 1

2
du
��Uðuðx; zÞ; zÞDz2 þ � � � ¼ 0 ð16Þ
Because Eq. (16) holds for varying Dz, it leads to
duUðuðx; zÞ; zÞ ¼ 0 ð17aÞ

du
�Uðuðx; zÞ; zÞ ¼ 0 ð17bÞ

du
��Uðuðx; zÞ; zÞ ¼ 0; . . . ð17cÞ
Eq. (17a) gives the solution u(x;z) for the reference problem. The sensitivity problem in Eq. (17b) yields the
solution sensitivity �uðx; zÞ and the higher order terms in (17c) are not considered in this research.
The variation of the total potential in Eq. (13) is given as
duUðuðx; zÞ; zÞ ¼
Z z

x¼0
fku0ðx; zÞdu0ðx; zÞ � f duðx; zÞgdxþ

Z L

x¼z
eku0ðx; zÞdu0ðx; zÞdx ¼ 0 ð18Þ
and the sensitivity problem is
du
�U ¼ ku0ðz; zÞdu0ðz; zÞ � f duðz; zÞ þ

Z z

x¼0
fk�u0ðx; zÞdu0ðx; zÞ þ ku0ðx; zÞd�u0ðx; zÞ � f d�uðx; zÞgdx

� eku0ðz; zÞdu0ðz; zÞ þ
Z L

x¼z
fek�u0ðx; zÞdu0ðx; zÞ þ eku0ðx; zÞd�u0ðx; zÞgdx

¼ ku0ðz; zÞdu0ðz; zÞ � f duðz; zÞ � eku0ðz; zÞdu0ðz; zÞ þ
Z z

x¼0
k�u0ðx; zÞdu0ðx; zÞdx

�
þ
Z L

x¼z
ek�u0ðx; zÞdu0ðx; zÞdx

�
þ

Z z

x¼0
fku0ðx; zÞd�u0ðx; zÞ � f d�uðx; zÞgdx

�
þ
Z L

x¼z
eku0ðx; zÞd�u0ðx; zÞdx

�
¼ 0

ð19Þ
Since the kinematic constraint in Eq. (14) is imposed at a non-design boundary, the corresponding con-
straint for the sensitivity problem is easily obtained as
�uð0; zÞ ¼ 0 ð20Þ

From Eqs. (14) and (20), we can see that du in Eq. (18) and d�u in Eq. (19) are in the same kinematically
admissible space, so the terms in the second bracket in Eq. (19) vanish. The final form of the sensitivity
equation and its kinematic constraint are
ku0ðz; zÞdu0ðz; zÞ � f duðz; zÞ � eku0ðz; zÞdu0ðz; zÞ þ
Z z

x¼0
k�u0ðx; zÞdu0ðx; zÞdxZ L

x¼z
ek�u0ðx; zÞdu0ðx; zÞdx ¼ 0 ð21Þ

�uð0; zÞ ¼ 0 ð22Þ

Note that the first three terms in Eq. (21) arise only at the design boundary and act as force terms in
the equation. Also, the stiffness terms in Eq. (21) are exactly the same as those of the reference problem
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in Eq. (18). For numerical implementation, the same basis functions for the approximation of �u as those of
u are used; therefore, the stiffness matrix from Eq. (18) can be reused as the stiffness matrix for Eq. (21). We
will explain more issues of the numerical formulation using two-dimensional problems because the one-
dimensional problem with the fictitious domain is not so meaningful.
If kinematic constraint is imposed at the design boundary, more attentions are required to be paid. In-

stead of the condition in Eq. (12c), consider the fixed design boundary, i.e.,
u ¼ 0 at x ¼ z ð23Þ

Taylor�s expansion is used again for the perturbed boundary:
uðzþ Dz; zþ DzÞ ¼ uðz; zÞ þ u0ðz; zÞDzþ �uðz; zÞDzþ � � � ð24Þ

As the design boundary is also fixed in the perturbed problem, Eq. (24) results in
�uðz; zÞ ¼ �u0ðz; zÞ ð25Þ

In the above, the kinematic constraint for the design boundary in the sensitivity equation is given as the
spatial derivative of the solution. Thus, u and �u have different kinematic constraints. Moreover, the terms
in the second bracket in Eq. (19) do not vanish because d�u cannot be zero at the constrained design
boundary:
d�uðz; zÞ ¼ �du0ðz; zÞ ¼ �dðduÞ
dx

				
x¼z

6¼ 0 ð26Þ
Since u in Eq. (19) is in equilibrium, every point of the domain has zero contribution from those terms in
the second bracket except the fixed design boundary. In other words, the nonzero contribution of the terms
arises at the fixed design boundary where du is zero and d�u is not zero, and the value of the contribution can
be determined considering the reaction force at the point and Eq. (25). Hansen et al. (2001) mentioned that
the nonzero component can be considered as the sensitivity of the incremental work required to move the
solution at the reference boundary constraint to its perturbed position.

3.2. Two-dimensional problems

3.2.1. Poisson equation
A two-dimensional heat conduction problem is considered. The domain of interest and its embracing fic-

titious domain are illustrated in Fig. 1. The differential equation and boundary conditions of the problem are
�r � ðkruÞ ¼ f in x ð26aÞ

and
u ¼ 0 on Cg
x ð26bÞ

ðkruÞ � n ¼ 0 on Ch
x ð26cÞ
where n is the unit vector outward normal to the boundary.
The total potential energy of the whole domain is expressed as
U ¼
Z Z

x

1

2
kru:ru� fu

� �
dx þ

Z Z
Xnx

1

2
ekru � rudx ð27Þ
The solution of the problem is obtained from the variational form of the above:
duU ¼
Z Z

x
fkru:rdu� f dugdx þ

Z Z
Xnx

ekru � rdudx ¼ 0 ð28Þ
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with
u ¼ 0 on Cg
x ð29Þ
Using Eq. (17b) and the formula in Eq. (4), the sensitivity equation for a certain design parameter is
derived as
du
�U ¼

Z Z
x
kr�u � rdudx þ

Z Z
Xnx

ekr�u � rdudx

" #

þ
Z Z

x
fkru � rd�u� f d�ugdx þ

Z Z
Xnx

ekru � rd�udx

" #

þ
Z
DCx

fkru � rd�u� f d�ugV � ndC �
Z
DCx

fekru � rd�ugV � ndC ¼ 0 ð30Þ
where the negative sign of the last term is due to the opposite direction of the normal vector when DCx is
viewed from Xnx.
If the kinematic constraint is not imposed on the design boundary, i.e., DCx \ Cg

x ¼ /, the constraint for
Eq. (30) is simply
�u ¼ 0 on Cg
x ð31Þ
and the terms in the second bracket in Eq. (30) will vanish as in the one-dimensional case.
If DCx \ Cg

x 6¼ /, then the kinematic constraint for the perturbed problem is expanded as
uðxþ VDz; zþ DzÞ ¼ uðx; zÞ þ ruðx; zÞ � VDzþ �uðx; zÞDzþ � � � ð32Þ
so ignoring higher order terms leads to
�uðx; zÞ ¼ �ruðx; zÞ � V for x 2 DCx \ Cg
x ð33Þ
In Eq. (33), we assume the kinematic constraints for the reference and the perturbed problem are iden-
tical. Thus, the kinematic constraint for the sensitivity equation can be represented as the gradient of the
solution in the design velocity direction. The imposition of (33) is, however, difficult for the fixed-grid anal-
ysis since the design boundary does not pass though the grid points. Generally, the problems with fixed
design boundaries are not easy to handle in a fixed-grid analysis.
Now we consider the numerical formulation of Eq. (30) using the single-scale fixed-grid method. The

terms in the first bracket in the equation form the stiffness matrix of the sensitivity equation, which is
the same as that of the reference problem. The terms in the second bracket vanish if the design boundary
is not fixed, so we consider the formulation of the last boundary integration terms.
In Fig. 5, an element on a design boundary is illustrated. We parameterize the boundary with a Bezier or

a B-spline curve and the vertical movement of the control point of the curve is selected as a design para-
meter. For the numerical analysis, however, the boundary curve is approximated as a straight line.
Nonlinear approximations of the curve for the numerical analysis would considerably improve the solution
accuracy, but the consistent use of the nonlinear interpolation of the field variables will make the analysis
quite involved. In this work, we choose to use the bilinear interpolation functions for the field variables, but
an efficient multiscale adaptive method with dense nodal distributions near the boundary curve will be
employed instead. The adaptive scheme will be explained in Section 5.
We approximate the solution on the element shown in Fig. 5 as
ue ¼
X4
i¼1

Niðn; gÞU e
i ð34Þ
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Fig. 5. An element on a design boundary and its boundary velocities at intersection points for the vertical movement of the control
point.
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where Ni is the bilinear shape function. The element force vector for the sensitivity equation from the last
two terms of Eq. (30) is
ef e ¼ �ðUeÞT
Z
DCexA

k
oNT

ox
oN

ox
þ k

oNT

oy
oN

oy
� fNT

� �
VTndC

þ ðUeÞT
Z
DCexA

ek
oNT

ox
oN

ox
þ oNT

oy
oN

oy

� �
VTndC ð35Þ
where Ue and N are the vector representations of U e
i and Ni and the design boundary on the element,

DCex,
is approximated as the oblique line, DCexA

, which is illustrated by the dashed line in Fig. 5. The boundary
design velocity V is also linearly approximated and the normal vector n is constant on the approximated
boundary. For the element in Fig. 5, Eq. (35) is rewritten as
ef e ¼ �ðUeÞT
Z 1

�1
k
oNT

ox
oN

ox
þ k

oNT

oy
oN

oy
� fNT

� �
VTn~J df

þ ðUeÞT
Z 1

�1
ek

oNT

ox
oN

ox
þ oNT

oy
oN

oy

� �
VTn~J df ð36Þ
with
V ¼ 0;
1� f
2

V b þ
1þ f
2

V a

� �
ð37Þ
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The Jacobian ~J in Eq. (36) relates the coordinate on DCexA
and its normalized coordinate f, which is the

half length of DCexA
. We mention that the boundary design velocity at intersection points, Va and Vb in Eq.

(37), can be obtained with the parametric location of those points on the boundary. Simple examples will be
given in Section 4 (see Chang and Choi, 1992 and Choi and Chang, 1994 for more details).

3.2.2. Plane elasticity problem

From the formulation results of the Poisson problem, the extension of the formulations to plane elastic-
ity problems is straightforward. The total potential energy and the kinematic constraint of a plane structure
is
U ¼
Z Z

x

1

2
eTCe� fTu

� �
dx þ

Z Z
Xnx

e
1

2
eTCedx ð38Þ
with
u ¼ 0 on Cg
x ð39Þ
where e is the strain vector, f is the force vector, and u is the displacement vector.
The first variation of Eq. (38) is given as
dU ¼
Z Z

x
fdeTCe� fTdugdx þ

Z Z
Xnx

edeTCedx ð40Þ
and the solution sensitivity is obtained from
d�U ¼
Z Z

x
deTC�edx þ

Z Z
Xnx

edeTC�edx

" #

þ
Z Z

x
fd�eTCe� fTd�ugdx þ

Z Z
Xnx

ed�eTCedx

" #
þ
Z
DCx

fdeTCe� fTdugVTndC

�
Z
DCx

fedeTCegVTndC

¼ 0 ð41Þ
The kinematic constraint for Eq. (41) is
�u ¼ 0 on Cg
x ð42Þ
under the condition of DCx \ Cg
x ¼ /, so the terms in the second bracket in Eq. (41) also vanish.

The last two terms in Eq. (41) form the force vector of the sensitivity equation after numerical formu-
lation. The element force vector for a boundary element is given as
ef e ¼ �ðUeÞT
Z 1

�1
fBTCB�NTfgVTneJ df þ ðUeÞT

Z 1

�1
efBTCBgVTn~J df ð43Þ
where Ue is the nodal displacement vector of the element and N is the matrix with bilinear shape functions.
4. Numerical examples

In most shape optimization problems, local performance measures such as heat fluxes or the Von Mises
stresses, rather than solution itself, are considered as design constraints. Although we use the fixed-grid
analysis method and calculate a solution on the fixed grids, the points where the local performances are
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Fig. 6. The neighboring elements used to calculate the local performance on the boundary point A and the Gauss points considered in
the least square approximation (·: Gauss points).
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evaluated move as the design changes. So, if the local performance is denoted as w(x;z), the coordinate x in
w(x;z) is not stationary. Therefore, the sensitivity of w(x;z) is
dwðx; zÞ
dz

¼ ow
oz

þ
XN
i¼1

ow
oxi

oxi
oz

¼ �w þ ðr � wÞ � V ð44Þ
To calculate Eq. (44), we need the solution for w, the solution sensitivity for �w, and the boundary design
velocity V at the point of interest.
During the shape optimization process, a domain boundary may move across the element boundary of

the fixed grids. In this case, the local performance measure w may not be differentiable. Thus, the stress at a
point of interest can undergo an abrupt change as the point moves from one element to another element. To
avoid the resulting numerical difficulty and obtain the stable estimate of w at a given point, w is approxi-
mated by using w�s at the stiffness integration points (or the Gauss points) of the neighboring elements. For
the approximation, the least square approximation technique is used. Fig. 6 shows the neighboring elements
and their Gauss points that are used to calculate the local performance at the desired point. However, the
elements lying totally outside the domain of interest are excluded.

4.1. Case study 1: Heat flux sensitivity

Fig. 7(a) illustrates a structure with a unit thermal conductivity, whose top edge is under uniform heat
flux q = 1. The bottom edge of the structure has zero temperature and both side edges are insulated. For the
fixed-grid analysis with oblique boundary approximation, a fictitious domain with 5 · 5 fixed mesh in Fig.
7(b) is introduced.
The design boundary is the right edge of the structure and is parameterized using a Bezier curve with

three control points:
pðuÞ ¼
X2
i¼0

Bi;2ðuÞQi ð0 6 u 6 1Þ ð45Þ
with
Bi;kðuÞ ¼
k

i

� �
uið1� uÞk�i ð46Þ
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Fig. 7. A heat conduction problem: (a) the domain of interest and (b) its fixed mesh with the fictitious domain.
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The initial positions of the control points are Q0 = [0.7,0],Q1 = [0.55,0.5] andQ2 = [0.4,1] and the x-direc-
tional movement of Q1 is selected as the design parameter z.
Using Eq. (45), the boundary design velocity is evaluated as
Table
Sensiti

P1
P2
P3
VðuÞ ¼ d

dz
pðuÞ ¼ B1;2ðuÞ½1; 0� ¼ ½2uð1� uÞ; 0� ð47Þ
by which the velocities at intersection points and points of performance measure can be calculated with
their parametric locations.
In Table 1, we list the design sensitivity results at three boundary points whose parametric locations are

u = 0.3, 0.5 and 0.7, respectively. The numerical values in the parentheses denote the heat flux components
in the horizontal and vertical directions. Since the semi-analytic sensitivity is available, it will be interesting
to check the effect of the perturbation Dz on the accuracy of the sensitivity by the finite difference scheme.
For the finite difference sensitivity evaluation, the following forward difference scheme is used:
dw
dz

� wðzþ DzÞ � wðzÞ
Dz
In Table 1, the sensitivities by the finite difference method for various values of Dz are compared with the
semi-analytic sensitivities. Unless Dz is very small, the sensitivity calculation by the finite difference method
may not be accurate. Moreover, the system stiffness matrix should be constructed and factorized as many
1
vity results of heat flux and comparison with the finite difference results

Semi-analytic (present) method Finite difference method

Dz = 10�2 Dz = 10�3 Dz = 10�4

(2.05e�1,1.21e0) (2.00e�1,1.20e0) (2.04e�1,1.21e0) (2.05e�1,1.21e0)
(�2.52e�1,9.99e�1) (�2.49e�1,9.96e�1) (�2.51e�1,9.99e�1) (�2.52e�1,9.99e�1)
(7.77e�1,3.80e�1) (5.86e�1,4.25e�1) (7.57e�1,3.85e�1) (7.75e�1,3.80e�1)
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times as design parameters are perturbed in the finite difference method. On the other hand, only the force
terms in Eq. (36) or Eq. (43)need to be changed in the proposed semi-analytic method so that the stiffness
matrix is constructed and factorized once regardless of the number of design parameters.

4.2. Case study 2: Elasticity problem with simple clamped beam

A structure with the same geometry as in the previous example is considered. Fig. 8 shows that the bot-
tom edge of the structure is fixed and a horizontal force F = 1.0 · 105 is imposed on the upper right corner.
The material has a Young�s modulus E = 2.0 · 108 and Poisson�s ratio m = 0.3. The fixed mesh in Fig. 7(b)
is also used for this problem. The design sensitivities of the Von Mises stresses at the points of interest are
listed in Table 2. Again, a small value of Dz should be used to get accurate results for the finite difference
method.

4.3. Case study 3: Gripper example

Fig. 9 shows the upper half geometry of a compliant gripper whose mechanism is based on the elastic
deformation of the structure. The geometry of the gripper is composed of eight B-spline curves which
approximate the boundaries of the result from topology optimization (Jang et al., 2003).
1.0

0.7

0.4

F

Fig. 8. A cantilever example.

Table 2
Sensitivity results of the Von Mises stress and comparison with the finite difference results

Semi-analytic (present) method Finite difference method

Dz = 10�2 Dz = 10�3 Dz = 10�4

P1 �1.13e6 �1.13e6 �1.13e6 �1.13e6
P2 �1.99e6 �1.97e6 �1.99e6 �1.99e6
P3 �0.89e6 �1.06e6 �0.90e6 �0.89e6



Fig. 9. A compliant gripper.

Table 3
Sensitivity results of the Von Mises stress for the gripper example

u Semi-analytic (present) method Finite difference method (Dz = 10�5)

P1 0.187 2.54e1 2.53e1
P2 0.253 2.37e1 2.35e1
P3 0.383 �1.27e2 �1.27e2
P4 0.463 8.17e1 8.17e1
P5 0.517 4.73e1 4.72e1
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In Fig. 9, the input force F = 5.0 · 104 is imposed at point A and a spring with kin = 2.0 · 104 is also
attached at the point to characterize the actuator, such as a piezo-electric actuator. At the output point
B, another spring with kout = 2.0 · 103 is attached to control the stiffness of the gripper. The material prop-
erties of the gripper are E = 2.0 · 105 and m = 0.3. The upper most boundary of the gripper is parameterized
with the 3rd order B-spline curve with 12 control points. The vertical movement of the 6th control point is
considered as the design parameter. The sensitivities of the Von Mises stresses at 12 points on the design
boundary are calculated and listed in Table 3, which shows the good agreement of the calculated sensitiv-
ities with the converged results of the finite difference method.
Note that, while the original boundaries of the gripper are B-spline curves, the approximated boundaries

for analysis are composed of piecewise linear segments. So the discrepancy between original and approxi-
mated boundaries may deteriorate the analysis accuracy. The accuracy may be improved by using higher-
order boundary approximations. For example, one may consider piecewise quadratic approximations of
the boundary and its velocity field by using three points, i.e., point A, point B and the middle point between
A and B (see Fig. 5). In that case, the approximation order of a solution should be consistent with the
approximation order of the boundaries. In this work, this quadratic approximation was not pursued. In-
stead, the boundary curve is discretized with many piecewise straight lines by using dense fixed mesh.
The resulting numerical cost is reduced by the adaptive scheme implemented within the wavelet-Galerkin
method which will be explained in the next section.
5. Sensitivity analysis for multiscale wavelet-Galerkin method

The fixed-grid analysis using the oblique boundary curve approximation can achieve much faster shape
optimization in cooperation with the adaptive analysis by the multiscale wavelet-Galerkin method (Jang
et al., 2004). In this section, we discuss the sensitivity analysis for the multiscale solution of the multiscale
wavelet-Galerkin method.
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Consider that the domain X in Fig. 1 is divided into 2Jx � 2Jy elements (Jx = Jy = J for ease of explana-
tion). Then, the approximated solution with the resolution level J is expressed as
uJ ¼
X
k;l

sJ ;k;l/J ;k;lðx; yÞ ð48aÞ

¼
X
k;l

sj0;k;l/j0;k;l
ðx; yÞ þ

XJ�1
j¼j0

X3
m¼1

X
k;l

dm
j;k;lw

m
j;k;lðx; yÞ ð48bÞ
where /j,k,l is the bilinear shape function (or the hat interpolation scaling function) whose sub index j rep-
resents the support size (or resolution) of the function, and k and l are translation indices. Also, wm

j;k;l in Eq.
(48b) is the hat interpolation wavelet whose super index indicates the difference in the measuring direction
of the function (see Jang et al., 2004 for more details). Eq. (48a) is the single-scale representation of the
approximated solution, and Eq. (48b) is the multiscale representation of the solution. The hat interpolation
wavelets /j,k,l and wm

j;k;l are similar to the hierarchical bases discussed in, e.g., Yserentant (1986). However,
the hierarchical bases are element-level multiscale bases and require isoparametric mapping to handle do-
mains with general boundaries.
A transformation matrix TTotalJ converts the multiscale solution into the single-scale solution: (the pro-

cedure to construct TTotalJ is given in Jang et al., 2004)
UJ ¼ TTotalJ WJ ð49Þ

where UJ is the vector composed of the single-scale solution sj,k,l and WJ is the multiscale solution vector
with sj0;k;l and dm

j;k;l.
The multiscale system equation for a reference problem is derived from the multiscale transformation of

the single-scale system equation: (see Jang et al., 2004)
K
_

JWJ ¼ F̂J ð50Þ

with
K
_

J ¼ ðTTotalJ ÞTKJT
Total
J ð51Þ

F
_

J ¼ ðTTotalJ ÞTFJ ð52Þ

where KJ is the stiffness matrix for the single-scale system equation and can be obtained using equations in
Section 2. Also, FJ is the force vector for the single-scale system equation.
Using the difference-checking nature of wavelets as an error indicator of the adaptive analysis, the mul-

tiscale system equation in (50) is progressively solved from low to high resolutions. In Fig. 10, a flowchart
for the multiscale adaptive analysis is illustrated. For the adaptive scheme, two thresholding parameters
(du > dl > 0) are employed. Assume that the analysis at the resolution level j + 1 with wavelets of
f/j0;k;l

; fwm
j0 ;k;lgj0¼j0;...;j

g is finished and the wavelet coefficients fdm
j0 ;k;lgj0¼j0;...;j

are calculated. Then the follow-
ing procedure is used for the adaptive analysis at the next resolution level j + 2: (see Jang et al., 2004 for
more details)

• Exclude the wavelet wm
j;k;l from the basis set if its coefficient jdm

j;k;lj < dl
j.

• Preserve wm
j;k;l in the basis set if dl

j 6 jdm
j;k;lj < du

j .
• Add child wavelets of wm

j;k;l into the basis set if jdm
j;k;lj P du

j .

The discrete sensitivity equation for the single-scale solution can be written as
KJ
�UJ ¼ eFJ ð53Þ
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The stiffness matrix in Eq. (53), as we discussed in Section 3, is the same as that of the reference problem,
and the force vector can be obtained using Eqs. (36) or (43). The transformation equation in Eq. (49) can be
also applied to find the solution sensitivity
�UJ ¼ TTotalJ
�WJ ð54Þ
so the multiscale solution sensitivity equation is derived as
K
_

J
�WJ ¼ eF_J ð55Þ
with
eF_J ¼ ðTTotalJ ÞTeFJ ð56Þ

The adaptive scheme, which is used for solving the reference problem of Eq. (50), is also applied for the

sensitivity problem of Eq. (55). Thus, faster shape sensitivity analysis is expected by the multiscale wavelet-
Galerkin method.
6. Conclusions

The analytic shape sensitivity for the fixed-grid method using the boundary approximation by piecewise
oblique lines was derived. The shape sensitivity analyses for two-dimensional Poisson problems and plane
elasticity problems were explicitly carried out. In the proposed fixed-grid method, the force terms in the
sensitivity equations appeared only at the boundary elements. Thus, the calculation of the force terms re-
quired the boundary velocity field on the boundary elements, and the field was approximated linearly in
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terms of the velocities at the intersection points of the original boundary curve and the edges of the fixed
finite elements. The analytic sensitivity derived in this investigation was validated by the comparison with
the numerical sensitivity. We also showed that the analytic sensitivity was applicable for the multiscale
wavelet-Galerkin method and presented the procedure to implement the shape sensitivity within the mul-
tiscale method. When the multiscale fixed-grid method is extended to three-dimensional problems, the pro-
posed method is expected to greatly speed up the whole shape optimization process.
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